Radiation effect and degradation mechanism in 65 nm CMOS transistor

Author:

Ma Wu-Ying ,Yao Zhi-Bin ,He Bao-Ping ,Wang Zu-Jun ,Liu Min-Bo ,Liu Jing ,Sheng Jiang-Kun ,Dong Guan-Tao ,Xue Yuan-Yuan , ,

Abstract

Radiation effect of deep submicron semiconductor device has been extensively studied in recent years. However, fewer researches laid emphasis on the degradation characterization induced by total ionizing dose (TID) damage in nano-device. The purpose of this paper is to analyze the TID effect on the 65 nm commercial complementary metal oxide semiconductor transistor. The n-type and p-type metal oxide semiconductor field effect transistors (NMOSFET and PMOSFET) with different sizes are irradiated by 60Co γ rays at 50 rad (Si)/s, and TID is about 1 Mrad (Si). Static drain-current ID versus gate-voltage VG electrical characteristics are measured with semiconductor parameter measurement equipment. The irradiation bias of NMOSFET is as follows:the ON state is under gate voltage VG=+1.32 V, drain voltage VD is equal to source voltage VS (VD=VS=0), and the OFF state is under drain voltage VD=+1.32 V, gate voltage VG is equal to source voltage VS (VG=VS=0). The irradiation bias of PMOSFET is follows:the ON state is under gate voltage VG=0 V, drain voltage VD is equal to source voltage VS (VD=VS=1.32 V), and the OFF state is under VD=VG=VS=+1.32 V. The experimental results show that the negative shifts in the threshold voltage are observed in PMOSFET after irradiation. Besides, for PMOSFET the degradation of the ON state during radiation is more severe than that of the OFF state, whereas comparatively small effect are present in NMOSFET. Through experimental data and theoretical analysis, we find that the changes in the characteristics of the irradiated devices are attributed to the building up of positive oxide charges in the light doped drain (LDD) spacer oxide, rather than shallow trench isolation oxide degradation. The positive charges induced by TID in PMOSFET LDD spacer oxide will lead to the change of hole concentration in channel, which causes the threshold voltage to shift. What is more, the difference in electric field in the LDD spacer is the main reason for the difference in the radiation response between the two radiation bias conditions. Radiation-enabled technology computer aided design used to establish two-dimensional mode of the transistor. The simulation results of ID-VG curves are in good agreement with the experimental results. Combining theoretical analysis and numerical simulation, the radiation sensitive regions and the damage physical mechanism and radiation sensitivity regions of PMOSFETs are given. This work provides the helpful theory guidance and technical supports for the radiation hardening of the nano-devices used in the radiation environments.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3