Model and applications of transition metal dichalcogenides based compliant substrate epitaxy system

Author:

Zhou Yu-Zhi , , ,

Abstract

The concept of compliant substrate epitaxy was first proposed by the scientists engaged in crystal growth in the early 1990s. The core idea is to take advantage of such an ultra-thin substrate that the film and the substrate generate strain together to relieve the lattice mismatch during the epitaxy growth. The quality of the epitaxial film is improved due to the reduction of the mismatch dislocation density. However, the preparation of the artificial ultra-thin substrate with good quality requires rather complicated fabrication process. On the other hand, many transition metal dichalcogenides naturally form the compliant substrates, due to their layered structure and weak van der Waals interlayer interaction. In this paper, we introduce the transition metal dichalcogenides based compliant substrate epitaxy model and relevant applications. Through combining density functional theory, linear elasticity theory and dislocation theory, we introduce the model comprehensively by using the Au-MoS2 as a prototypical example. And we explain the experimental results of Au growing on MoS2 from the early transition electron microscopy. In addition, we introduce the experimental work related to the model, especially the Au-mediated exfoliation of large, monolayer and high-quality MoS2. Future directions and relevant important problems to be solved are also discussed.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference2 articles.

1. [1] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147
[2] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699
[3] Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766
[4] Fang H, Chuang S, Chang T C, Takei K, Takahashi T, Javey A 2012 Nano Lett. 12 3788
[5] Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898
[6] Wei Z, Wang Q Q, Guo Y T, Li J W, Shi D X, Zhang G Y 2018 Acta Phys. Sin. 67 128103 (in Chinese)[魏争, 王琴琴, 郭玉拓, 李佳蔚, 时东霞, 张广宇 2018 物理学报 67 128103]
[7] Jacobs M H, Stowell M J 1965 Philos. Mag. 11 591
[8] Jesser W A, Kuhlmann-Wilsdorf D 1967 J. Appl. Phys. 38 5128
[9] Honjo G, Yagi K 1969 J. Vac. Sci. Technol. 6 576
[10] Pashley D W, Stowell M J, Jacobs M H, Law T J 1964 Philos. Mag. 10 127
[11] Jacobs M H, Pashley D W, Stowell M J 1966 Philos. Mag. 13 129
[12] Jesser W A, Kuhlmann-Wilsdorf D 1967 Phys. Stat. Sol. 19 95
[13] Zhou Y, Kiriya D, Haller E E, Ager J W, Javey A, Chrzan D C 2016 Phys. Rev. B 93 054106
[14] Kiriya D, Zhou Y, Nelson C, Hettick M, Madhvapathy S R, Chen K, Zhao P, Tosun M, Minor A M, Chrzan D C, Javey A 2015 Adv. Funct. Mater. 25 6257
[15] Zhu X, Song K, Tang K, Bai W, Bai J, Zhu L, Yang J, Zhang Y, Qi R, Huang R, Tang X, Chu J 2017 J. Alloys Compd. 729 95
[16] Borodinova T I, Styopkin V I, Vasko A A, Kutsenko V, Marchenko O A 2018 J. Nano- Electron. Phys. 10 03017
[17] Desai S, Madhvapathy S, Amani M, Kiriya D, Hettick M, Tosun M, Zhou Y, Dubey M, Ager J, Chrzan D, Javey A 2016 Adv. Mater. 28 4053
[18] Lo Y H 1991 Appl. Phys. Lett. 59 2311
[19] Woltersdorf J, Pippel E 1983 Phys. Status Solidi A 78 475
[20] Pippel E, Woltersdorf J 1983 Phys. Status Solidi A 79 189
[21] Chua C L, Hsu W Y, Lin C H, Christenson G, Lo Y H 1994 Appl. Phys. Lett. 64 3640
[22] Jones A M, Jewell J L, Mabon J C, Reuter E E, Bishop S G, Roh S D, Coleman J J 1999 Appl. Phys. Lett. 74 1000
[23] Bourret A 2000 Appl. Surf. Sci. 164 3
[24] Powell A R, Iyer S S, LeGoues F K 1994 Appl. Phys. Lett. 64 1856
[25] Hansen D, Moran P, Dunn K, Babcock S, Matyi R, Kuech T 1998 J. Cryst. Growth 195 144
[26] Carter-Coman C, Bicknell-Tassius R, Brown A S, Jokerst N M 1997 Appl. Phys. Lett. 70 1754
[27] Ejeckam F E, Seaford M L, Lo Y H, Hou H Q, Hammons B E 1997 Appl. Phys. Lett. 71 776
[28] Ayers J 2008 J. Electron. Mater. 37 1511
[29] Grimme S 2006 J. Comput. Chem. 27 1787
[30] Hirth J P, Lothe J 1991 Theory of Dislocations (Florida, USA: Krieger Publishing Company)
[31] Grönbeck H, Curioni A, Andreoni W 2000 J. Am. Chem. Soc. 122 3839
[32] Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G H, Sindoro M, Zhang H 2017 Chem. Rev. 117 6225
[33] Lin Z, McCreary A, Briggs N, Subramanian S, Zhang K, Sun Y, Li X, Borys N J, Yuan H, Fullerton-Shirey S K, Chernikov A, Zhao H, McDonnell S, Lindenberg A M, Xiao K, LeRoy B J, Drndić

2. M, Hwang J C M, Park J, Chhowalla M, Schaak R E, Javey A, Hersam M C, Robinson J, Terrones M 2016 2D Mater. 3 042001
[34] McDonnell S J, Wallace R M 2016 Thin Solid Films 616 482
[35] Liang T, Phillpot S R, Sinnott S B 2009 Phys. Rev. B 79 245110
[36] Liang T, Phillpot S R, Sinnott S B 2012 Phys. Rev. B 85 199903
[37] Stewart J A, Spearot D E 2013 Model. Simul. Mater. Sci. Eng. 21 045003
[38] Sun H, Sirott E W, Mastandrea J, Gramling H M, Zhou Y, Poschmann M, Taylor H K, Ager J W, Chrzan D C 2018 Phys. Rev. Mater. 2 094004
[39] Komsa H P, Krasheninnikov A V 2013 Phys. Rev. B 88 085318
[40] Ebnonnasir A, Narayanan B, Kodambaka S, Ciobanu C V 2014 Appl. Phys. Lett. 105 031603
[41] Koda D S, Bechstedt F, Marques M, Teles L K 2016 J. Phys. Chem. C 120 10895

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3