Super-resolution imaging of high-contrast target in elctromagnetic inverse scattering

Author:

Fan Qi-Meng ,Yin Cheng-You ,

Abstract

A method for the super-resolution imaging of two-dimensional (2D) high-contrast targets is presented. There are two main methods to reconstruct unknown targets with super resolution. One is to illuminate the targets with specific incident fields and transform the information about the evanescent waves into the propagation waves, and the other is to adopt non-linear inversion methods where the multiple scattering within the objects are considered. For the specific-incident-field method, it has been proved that the orbital-angular-momentum (OAM)-carrying electromagnetic (EM) waves can be employed to image unknown targets with super resolution. In fact, OAM-carrying EM waves can transform the information about the evanescent waves into the propagation waves. Thus the resolution of imaging results can break the Rayleigh limit, namely super resolution. At present, the application of OAM-based super-resolution algorithm is only valid for weak scatters based on Born approximation. For the non-linear inversion methods, the contrast source inversion (CSI) is widely used to reconstruct unknown targets, including large-contrast or complex ones. In the CSI method, the information about the evanescent waves is naturally involved since the EM coupling within the objects is taken into account. Thus super resolution can also be achieved by the CSI method. This paper demonstrates a novel algorithm for super resolution of large-contrast targets by combining the OAM-based super-resolution technique and the CSI method. And the better resolution is achieved than by the CSI method. Firstly, 2D OAM EM waves are generated using uniform circular array of line source, and the region of interest is illuminated by the OAM beams of different topological charges. So the information about the evanescent waves can be converted into the propagation waves. Secondly, Born approximation is used to obtain the starting value of the contrast. In the process of evaluating the contrast, the super-resolution information is fully utilized. Thirdly, the starting value of the contrast source is evaluated using the starting value of the contrast. Then the CSI method starts to be iterated. Since the information about the evanescent waves is always involved in the iterating process, super-resolution reconstruction can be obtained and is better than that obtained by the CSI method. Numerical experiments show the accuracy of the algorithm by testing different scenarios. The resolution and outline of the target are reconstructed accurately even when the measurement data are corrupted by noise. To sum up, to reconstruct unknown targets with super resolution, one should firstly transform the information about the evanescent waves into the propagation waves, and secondly make full use of the super-resolution information in the inversion methods. The conclusion of this paper may provide an insight into the super resolution in EM inverse scattering.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference31 articles.

1. Kirsch A 2016 An Introduction to the Mathematical Theory of Inverse Problems Second Edition (Beijing: World Publishing Corporation) pp191-195

2. Yang J G, Huang X T, Jin T 2014 Compressed Sensing Radar Imaging (Beijing: Science Press) p5 (in Chinese) [杨俊刚, 黄晓涛, 金添 2014 压缩感知雷达成像(北京: 科学出版社) 第5页]

3. Gao F Q, van Veen B D, Hagness S C 2015 IEEE Trans. Antennas Propag. 63 3540

4. Rubæk T, Meaney P M, Meincke P, Paulsen K D 2007 IEEE Trans. Antennas Propag. 55 2320

5. Slaney M, Kak A C, Larsen L E 1984 IEEE Trans. Microwave Theory Tech. 32 860

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3