Coupling effects of surface elasticity and disjoining pressure on film drainage process

Author:

Ye Xue-Min ,Li Ming-Lan ,Zhang Xiang-Shan ,Li Chun-Xi ,

Abstract

The aim of the present paper is to investigate the gravity-driven draining process containing insoluble surfactants, with the coupling effects of surface elasticity and disjoining pressure taken into consideration. A set of evolution equations including liquid film thickness, surface velocity and surfactant concentration, is established based on the lubrication theory. Assuming that the top of the liquid film is attached to the wireframe and the bottom is connected to the reservoir, the drainage stability is simulated with the FreeFem software. The characteristics of film evolution under the coupled effects of surface elasticity and disjoining pressure are examined, respectively. The simulated results show that the surface elasticity and the disjoining pressure have significant influences on the vertical thin film draining process. Under the effect of the surface elasticity alone, the initial film thickness increases with the elasticity increasing and the black film only forms on the top of the liquid film, but cannot stably exist and breaks quickly. The addition of the surface elasticity can increase the liquid film thickness and the drainage time, reduce the surface velocity, and rigidify the interface. When the disjoining pressure is applied merely, the surfactant flows into the reservoir continuously; hardly can the liquid film form a surface tension gradient and thus cannot form a countercurrent phenomenon. Under the coupling effect of the surface elasticity and disjoining pressure, a more stable liquid film forms. In the early stage of drainage, surface elasticity increases the film thickness, reduces the surface speed and generates the liquid countercurrent to slow the drainage process. When the black film appears, the electrostatic repulsion of the disjoining pressure is notable and makes the black film stable. The results obtained in the paper are in agreement with some of the experimental results in the literature. However, the elasticity-related surface tension and surfactant concentration model used is a simplified model. The nonlinear relationship between surface tension and surfactant concentration should be further considered in future theoretical models.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3