High sensitivity quantum Michelson interferometer

Author:

Zuo Xiao-Jie ,Sun Ying-Rong ,Yan Zhi-Hui ,Jia Xiao-Jun , ,

Abstract

Michelson interferometer can be applied to not only the building block of the fundamental research of physics, but also the precise measurement, such as the direct observation of gravity wave signal. Therefore, high performance Michelson interferometer is the key step towards the implementation of direct observation of weak gravity wave signal. Recently, the vacuum noise was reduced by injecting squeezed vacuum into the unused port of Michelson interferomter, and the phase signal optical field in Mach-Zender interferometer is amplified based on the four-wave mixing in hot Rubidium atom. Here we study high sensitivity quantum Michelson interferometer. In the Michelson interferometer, the linear optical beam splitter is replaced by a non-degenerated optical parametric amplifier to realize the splitting and combining of optical fields, and the squeezed vacuum is also injected into the unused port of interferomter, so that the high signal-to-noise ratio and high sensitivity of phase measurement can be realized. Due to the inevitable optical losses, the losses inside and outside the Michelson interferometer are considered in our theoretical model. We investigate the influences of the losses inside and outside the Michelson interferometer on the sensitivity of phase measurement. By theoretical calculation, we analyze the dependence of sensitivity of phase measurement on system parameters, such as intensity of optical fields for phase sensing, gain factor of non-degenerated optical parametric amplifier, the losses inside and outside the Michelson interferometer, and the squeezing parameter of input squeezed vacuum, and thus the condition of high sensitivity nonlinear Michelson interferometer can be obtained. In a broad system parametric range, the quantum Michaleson interferometer can surpass standard quantum limit, and the nonlinear Michaleson interferometer with squeezed state injection can provide the optimal sensitivity for phase measurement. The nonlinear Michelson interferometer with squeezed state is suitable for weak signal measurement. While the gain factor of non-degenerated optical parametric amplifier is large enough, the nonlinear Michelson interferometer without injecting the squeezed vacuum can still reach the optimal sensitivity, which reduces the use of quantum resources. When the phase sensing optical field is strong, the linear Michelson interferometer with injecting the squeezed vacuum can also reach the optimal sensitivity, and the sensitivity is robust for both losses inside and outside the interferometer. All the kinds of interferometers are more sensitive to the loss inside the interferometer than outside the interferometer, and the sensitivity of phase measurement can be improved by reducing the loss inside the interferometer. Our result provides direct reference of experimental implementation of high performance interferometer for high precision quantum metrology.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3