Weak ultrasonic signal detection in strong noise

Author:

Wang Da-Wei1\2 ,Wang Zhao-Ba , ,

Abstract

In order to solve the problem of extracting ultrasonic signals from strong background noise, a novel method, which is termed APSO-SD algorithm and based on improved adaptive particle swarm optimization (APSO) and sparse decomposition (SD) theory, is proposed in this paper. This method can convert the ultrasonic signal denoising problem into optimizing the function on the infinite parameter set. First, based on the sparse decomposition theory and the structural characteristics of ultrasonic signal, the objective function of particle swarm optimization algorithm and the reconstruction algorithm of the denoised signal are constructed, so that particle swarm optimization and ultrasonic signal denoising can be combined. Second, in order to improve the robustness of the proposed approach, an APSO algorithm is proposed. What is more, because particle swarm optimization algorithm can be used to optimize in continuous parameter space, and according to the empirical characteristics of the ultrasonic signals used in practical engineering, a continuous super complete dictionary for matching ultrasonic signals is established. Since the super complete dictionary is continuous, there are an infinite number of atoms in the established dictionary. The redundancy of dictionaries is enhanced by the method in this paper. Based on the fact that the inner product of the optimal atom and the ultrasonic signal is one and the inner product of the noise and the optimal atom is zero in the established dictionary, the objective optimization function of APSO-SD algorithm is established. Finally, the optimal atom is determined based on the optimization result of the objective function. In this way, the denoising ultrasonic signal can be reconstructed by using the optimal atom according to the reconstruction algorithm. The processing results of simulated ultrasonic signals and measured ultrasonic signals show that the proposed method can effectively extract weak ultrasonic signals from strong background noise whose signal-to-noise ratio is lowest, as low as-4 dB. In addition, compared with the adaptive threshold based wavelet method, the proposed method in this paper shows the good denoising performance. In this paper, it is demonstrated that the problem of ultrasonic signal denoising can be transformed into the optimization of constraint functions. Furthermore, the ability of the proposed APSO-SD algorithm to accurately recover signals from noisy acoustic signals is better than that of the common wavelet method.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3