Abnormal viscosity changes in high-temperature metallic melts

Author:

Shang Ji-Xiang ,Zhao Yun-Bo ,Hu Li-Na ,

Abstract

The viscosity of high-temperature metallic melt, which is an important index for evaluating dynamics of liquid melt, is one of the basic physical properties. It not only influences the mold-filling capacity of melting metal in traditional casting techniques, but also exhibits more distinct influence on the fabrication of advanced material, such as metallic glass. According to the variation tendency of viscosity with temperature in alloy melt, the fragility of superheated melt could be obtained, which has proved to correlate with the ability of alloy to form glass. Besides, the viscosity of alloy well above the liquidus temperature also plays a key role in probing into the characteristic of liquid-liquid phase transition, the fragile-to-strong transition phenomenon, how the potential energy landscape evolves during cooling, etc. It has been generally accepted that the viscosity of metallic melt at high temperatures increases with temperature decreasing and could be fitted by an Arrhenius curve in the whole temperature range. However, recently more and more studies show that the viscosity of metallic melt cannot be fitted by only one Arrhenius curve. Instead, there exists at least one specific temperature below which the viscosity data begins to deviate from the Arrhenius curve at high temperature during cooling. These data could be described by another Arrhenius curve. In order to in depth understand this phenomenon, in this paper we summarize the viscosity data of different metallic melts in the literature. On the basis of introducing the method of detecting high-temperature melt viscosity, we discuss comprehensively the changing tendency of viscosity with temperature and the characteristics of abnormal viscosity changes in pure metal, binary and multivariate alloys well above the liquidus temperature. It is found that the abnormal viscosity changes generally occur in alloys that could form the types of intermetallic compounds. The abnormal viscosity change in metallic melt is accompanied with exothermic or endothermic effect, depending on alloy system, and reflects the existence of liquid-liquid transition well above the liquidus temperature. Besides, such an abnormal change of viscosity influences the ability to form metallic glass liquids. Although the abnormal dynamic change of metallic melt hints the existence of complexity of structural change in liquid during cooling, what is the key factor underlying this phenomenon remains a mystery. By combining the advanced experimental techniques such as high-energy X-ray diffraction and neutron scattering with the computer simulation method, this problem may be understood further. Besides, the relation between viscosity abnormity and the phase diagram is another problem that deserves to be noticed in the future.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Model of Temperature-Induced Liquid–Liquid Transition in Metallic Melts;Metallurgical and Materials Transactions B;2022-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3