Research progress of mid-and far-infrared nonlinear optical crystals

Author:

Jia Ning ,Wang Shan-Peng ,Tao Xu-Tang ,

Abstract

High-power tunable mid-infrared (MIR) and far-infrared (FIR) lasers in a range of 3-20 μm, especially in the atmospheric windows of 3-5 μm and 8-12 μm are essential for the applications, such as in remote sensing, minimally invasive surgery, telecommunication, national security, etc. At present, the technology of MIR and FIR laser have become a research hotspot. As the core component of all-solid-state laser frequency conversion system, nonlinear optical (NLO) crystals for coherent MIR and FIR laser are urgently needed by continuously optimizing and developing. However, compared with several outstanding near infrared, visible, and ultraviolet NLO crystals, such as <i>β</i>-BaB<sub>2</sub>O<sub>4</sub>, LiB<sub>3</sub>O<sub>5</sub>, LiNbO<sub>3</sub>, KTiOPO<sub>4</sub>, and KBe<sub>2</sub>BO<sub>3</sub>F<sub>2</sub>, the generation of currently available NLO crystals for 3-20 μm laser is still underdeveloped. Traditional NLO oxide crystals are limited to output wavelengths ≤ 4 μm due to the multi-phonon absorption. In the past decades, the chalcopyrite-type AgGaS<sub>2</sub>, AgGaSe<sub>2</sub> and ZnGeP<sub>2</sub> have become three main commercial crystals in the MIR region due to their high second-harmonic generation coefficients and wide IR transparency ranges. Up to now, ZnGeP<sub>2</sub> is still the state-of-the-art crystal for high energy and high average power output in a range of 3-8 μm. Unfortunately, there are still some intrinsic drawbacks that hinder their applications, such as in poor thermal conductivity and low laser damage threshold for AgGaS<sub>2</sub>, non-phase-matching at 1.06 μm pumping for AgGaSe<sub>2</sub>, and harmful two-photon absorption at 1.06 μm for ZnGeP<sub>2</sub>. In addition, ZnGeP<sub>2</sub> has significant multi-phonon absorption in an 8-12 μm band, which restricts its applications in long wavelength MIR. With the development of research, several novel birefringent crystals, as well as all-epitaxial processing of orientation-patterned semiconductors GaAs (OP-GaAs) and GaP (OP-GaP), have been explored together with attractive properties, such as large NLO effect, wide transparency ranges, and high resistance to laser damage.<br/>In this paper, from the angle of the compositions of NLO crystal materials, several kinds of phosphide crystals (ZnGeP<sub>2</sub> CdSiP<sub>2</sub>) and chalcogenide crystals (CdSe, GaSe, LiInS<sub>2</sub> series, and BaGa<sub>4</sub>S<sub>7</sub> series) are summarized. In addition, the latest achievements of the orientation-patterned materials such as OP-GaAs and OP-GaP are also reviewed systematically. In summary, we review the above-mentioned attractive properties of these materials such as in the unique capabilities, the crystal growth, and the output power in the MIR and FIR region.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3