Eliminating spiral wave and spatiotemporal chaos in cardiac tissues by suppressing the rotation of spiral wave tip

Author:

Li Qian-Yun ,Huang Zhi-Jing ,Tang Guo-Ning ,

Abstract

The variation of the function of sodium channel in cardiomyocyte is associated with multiple cardiac diseases. Increasing sodium channel availability can effectively increase sodium influx, leading to enhanced cardiomyocyte excitability, prolonged action potential duration and late sodium current activity, which may cause ventricular arrhythmia. On the other hand, enhancing cardiomyocyte excitability can effectively increase the conduction velocity of the medium in the rotation center of spiral wave, which can restrain the rotation of spiral wave, leading to the disappearance of spiral wave. However, how to increase the excitability of cardiomyocytes while avoiding arrhythmias has not yet been explored so far. In this paper, we study how to regulate the changes of sodium current in cardiac myocytes to control spiral wave and spatiotemporal chaos in a two-dimensional cardiac tissues by using the Luo-Rudy phase I model. We propose such a sodium current control scheme:when the cell is excited, the regulation of sodium current begins. If the absolute value of sodium current obtained from the model equation is less than the absolute value of sodium current control threshold, the sodium current is simply equal to the control threshold of sodium current. In other cases, the absolute value of sodium current cannot exceed the maximum value without control. When the membrane potential rises over-5 mV, the sodium current evolves naturally. This method of regulating sodium current ensures that all cells have almost the same amplitude of sodium current, while without obviously changing the excitation-time. All cells thus have the same excitability under the control of sodium current, so that the excitation of cell is less affected by spiral wave tip. The numerical simulation results show that as long as the control threshold of sodium current reaches a critical value, the rotation of spiral wave tip is effectively suppressed, causing spiral wave to move out of the system boundary and spatiotemporal chaos to disappear after it has evolved into a spiral wave. If the absolute value of sodium current control threshold is large enough, the spiral wave and spatiotemporal chaos would also disappear through conductive block. These results can provide a new idea for antiarrhythmic therapy.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3