Coherent terahertz radiation via ultrafast manipulation of spin currents in ferromagnetic heterostructures

Author:

Zhang Shun-Nong ,Zhu Wei-Hua ,Li Ju-Geng ,Jin Zuan-Ming ,Dai Ye ,Zhang Zong-Zhi ,Ma Guo-Hong ,Yao Jian-Quan , , , ,

Abstract

The development of efficient terahertz (THz) radiation sources is driven by the scientific and technological applications. To date, as far as the radiation of THz pulses is concerned, the widely used methods are biased semiconductor, electro-optical crystal and air plasma, which are excited separately by femtosecond laser pulses. The mechanisms involved in these THz sources are photo-carrier acceleration, second order nonlinear effect, and plasma oscillations, respectively. Here, we report the generation of coherent THz radiation in the designed ferromagnetic/non-magnetic metallic W/CoFeB/Pt and Ta/CoFeB/Pt trilayers on SiO2 substrates, excited separately by ultrafast laser pulses. The transient THz electric field is fully inverted when the magnetization is reversed, which indicates a strong connection between THz radiation and spin order of the sample. We present the THz radiation results of the bilayers, CoFeB/W, CoFeB/Pt and CoFeB/Ta, which are comprised of the trilayer heterostructures used in our experiments. We find that all experimental results are in good agreement with the results from the inversed spin-Hall effect (ISHE) mechanism. Owing to the ISHE, the transient spin current converts into a transient transverse charge current, which launches the THz electromagnetic wave. In our experiments, W or Ta has an opposite spin Hall angle to Pt. Therefore, the amplitude of the THz emission can be increased by a constructive superposition of two charge currents in metallic layers. Our results indicate that the peak-values of the THz radiation covering the 0-2.5 THz range from W/CoFeB/Pt and Ta/CoFeB/Pt are stronger than that from 0.5 mm thick ZnTe (110) crystal, under very similar excitation conditions. Finally, we investigate the dependence of peak-to-peak values for two different heterostructures on the pump fluence. The saturations of THz pulse at pump fluences of~0.47 mJ/cm2 and~0.61 mJ/cm2 are found for W/CoFeB/Pt and Ta/CoFeB/Pt heterostructures, respectively. The saturation can be generally attributed to the spin accumulation effect and laser-induced thermal effect. Our results indicate that the spin accumulation effect, by which the density of spin-polarized electrons is restricted in a non-magnetic metallic layer, is slightly less pronounced for Ta/CoFeB/Pt system at high fluences. Our findings provide a new pathway for fabricating the spintronic THz emitter, which is comparable to the conventional nonlinear optical crystals.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3