Local adaptive heterogeneous synchronization for interdependent networks with delayed coupling

Author:

Wang Yu-Juan ,Tu Li-Lan ,Song Shuai ,Li Kuan-Yang ,

Abstract

With the development of the networks, the coupling between networks has become increasingly significant. Here, the networks can be described as interdependent networks. An interdependent network can have two different kinds of links, a connectivity link and a dependency link, which are fundamental properties of interdependent networks. During the past several years, interdependent complex network science has attracted a great deal of attention. This is mainly because the rapid increase in computing power has led to an information and communication revolution. Investigating and improving our understanding of interdependent networks will enable us to make the networks (such as infrastructures) we use in daily life more efficient and robust. As a significant collective behavior, synchronization phenomena and processes are common in nature and play a vital role in the interaction between dynamic units. At the same time, the time delay problem is an important issue to be investigated, especially in biological and physical networks. As a matter of fact, time delays exist commonly in the real networks. A signal or influence traveling through a network is often associated with time delay. In this paper, the local adaptive heterogeneous synchronization is investigated for interdependent networks with delayed coupling consisting of two sub-networks, which are one-by-one inter-coupled. The delays exist both in the intra-coupling and in the inter-coupling between two sub-networks, the intra-coupling and inter-coupling relations of the networks satisfy the requirements for nonlinearity and smoothness, and the nodes between two sub-networks have different dynamical systems, namely heterogeneous systems. Based on the Lyapunov stability theory, linear matrix inequality, and adaptive control technique, with proper controllers and adaptive laws for the networks, the sufficient conditions are proposed to synchronize the sub-networks of the interdependent networks into heterogeneous isolated systems, respectively. In order to illustrate the main results of the theoretical analysis clearly, some numerical simulations for an interdependent network with NW small world sub-network and BA sub-network are presented, in which each sub-network has 100 nodes and the heterogeneous systems are Lorenz and Rössler systems. The numerical simulations show that using the controllers and adaptive laws proposed, the network obtains the local heterogeneous synchronization quickly, that is, the nodes of two sub-networks are synchronized into Lorenz and Rössler systems separately. Thus, they verify the feasibility and correctness of the proposed techniques. It is worth noting that the presented results are delay-independent. In the future, our research will be directed to the further investigation of the delay-dependent synchronization of interdependent networks by using the current results as a basis.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3