Influences of interstitial atoms H, B and C on magnetic properties and magnetocaloric effect in LaFe11.5Al1.5 compound

Author:

Yang Jing-Jie ,Zhao Jin-Liang ,Xu Lei ,Zhang Hong-Guo ,Yue Ming ,Liu Dan-Min ,Jiang Yi-Jian , , , ,

Abstract

Magnetic refrigeration materials based on magnetocaloric effect (MCE) attract wide attention.In the past decades, magnetic materials with MCE have been extensively studied due to their enormous potential applications in magnetic refrigeration fields.Among these materials,La (Fe,Al)13 compound is perceived to be one of the promising candidates as high-performance magnetic refrigerant because of its giant magnetic entropy change,tunable Curie temperature,low cost and toxin-free.For LaFe13-xAlx compounds,previous studies showed that the TC can increase by substituting Co for Fe,which leads to the value of maximum magnetic entropy change (-△SM) decreasing.In addition,the interstitial atom (N,H,C and B) can cause the lattice to expand,which shifts the anti-ferromagnetic (AFM) ground state to the ferromagnetic (FM) state.The TC increases with doping the interstitial atoms,accompanied by a remarkable change in the magnetic properties related to the magneto-volume effect.In this paper,the magnetic properties and the magnetocaloric effects of LaFe11.5Al1.5Hx(x=0,0.12,0.6 and 1.3), LaFe11.5Al1.5By(y=0.1,0.2 and 0.3) and LaFe11.5Al1.5Cz(z=0.1,0.2,0.3,0.4 and 0.5) intermetallic compounds are studied.The H,B or C atoms are inserted into the LaFe11.5Al1.5 compounds by gas-solid or solid-solid reaction.All the compounds crystallize into the cubic NaZn13-type structure.The magnetic ground state changes from the AFM to the FM state due to the introduction of interstitial atoms.Unlike the patent compound LaFe11.5Al1.5,all of the hydrides,borides and carbides display a typical FM state,which easily reach saturation under a magnetic field of 1 T.In addition,the saturation magnetization (MS) slightly increases and the Curie temperature (TC) significantly is enhanced with increasing the interstitial atom (H,B or C) content.It is attractive that the magnetic transition changes from the second-order to the weakly first-order with increasing hydrogen content,which is in contrast with the magnetic transition from the weakly first-order to the second-order with increasing boron or carbon content.All the compounds of LaFe11.5Al1.5 hydrides, borides and carbides exhibit a considerable magnetic entropy change.The values of maximum magnetic entropy change (-△SM) reach 12.3 J/kg·K for LaFe11.5Al1.5H1.3,9.6 J/kg·K for LaFe11.5Al1.5B0.1 and 10.8 J/kg·K for LaFe11.5Al1.5C0.2 under a magnetic field change of 0-5 T,respectively.And the values of refrigerant capacity (RC) reach 259.2 J/kg for LaFe11.5Al1.5H0.6,116.4 J/kg for LaFe11.5Al1.5B0.1,and 230.4 J/kg for LaFe11.5Al1.5C0.1 under a magnetic field change of 0-5 T,respectively,indicating that LaFe11.5Al1.5H0.6 compound is a promising candidate for magnetic refrigerants.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3