Atmospheric channel model of maritime visible light communication based on repeated coding

Author:

Zheng Xiao-Tong ,Guo Li-Xin ,Cheng Ming-Jian1\2 ,Li Jiang-Ting , ,

Abstract

Visible light communication (VLC) is a new type of wireless communication technology, and its applications in offshore ships and ship-shore lamp signal systems are drawing increasing attention as a supplement of communication net. In maritime environment, VLC system is affected by many factors, of which the wave fluctuation and atmospheric turbulence are the most noticeable. The turbulence will make signal intensity fluctuate randomly, and thus reducing the performance of VLC system operating in the atmosphere. To establish an effective VLC network in the actual marine environment, an effective channel transmission model needs to be established and used to study the performance of the maritime VLC link. Considering large aperture diameter receiver with the aperture averaging effect, log-normal distribution model is employed to deduce the mathematical expression of average bit error rate of maritime VLC system in atmospheric turbulence. By using time-diversity to transmit interleaved symbols with repeated coding in a maritime VLC system, it is possible to ensure that the code-word passes through multiple channels to resist the deep fade performance, and to reduce the bit error rate due to the occurrence of deep fading in a single channel. In the actual application process, in order to improve the system performance, the average signal-to-noise ratio usually increases with the transmission power increasing, but for a VLC system, there are some difficulties in making the high-power high-rate visible light transmitters. And the power will produce light pollution and even damage the naked eye. The implementation of the repetitive coding principle is simple, and in some special cases it is even better than the complex orthogonal space-time coding and other schemes, so studying the system performance of the repetitive coding scheme is of considerable value for practical application. Based on the modified Pierson-Moskowitz spectrum, the effect of wave height, transmission distance, atmospheric turbulence intensity, receiver aperture size and visibility on the average bit error rate of VLC system are analyzed. The performance of the VLC system between lighthouse and ship is affected by the fluctuations of the sea waves, and the average bit error rate changes with randomness and complexity like the sea waves in a short distance. As the wind speed increases, the marine environment becomes worse and the average bit error rate is undulate. The average bit error rate of maritime VLC increases with the increasing of transmission distance and atmospheric turbulence intensity, and with the decreasing of receiver aperture size, wavelength and average signal-to-noise ratio. Atmospheric turbulence intensity and visibility have a significant effect on the system performance, and it should be emphatically considered to take measures to reduce the influence. Increasing receiver aperture and repetitive coding are effective to a certain extent. In the present work a new model is proposed for evaluating the performance of a maritime VLC system and providing reference for practical application.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3