Effects of plastic deformation in current collector on lithium diffusion and stress in bilayer lithium-ion battery electrode

Author:

Song Xu ,Lu Yong-Jun ,Shi Ming-Liang ,Zhao Xiang ,Wang Feng-Hui ,

Abstract

Lithium-ion batteries (LIBs) have already become indispensable energy storage devices, as they can meet urgent requirements for higher energy and power density in the applications ranging from portable electronics to electric vehicles. However, in the process of charging and discharging of LIB, the diffusion-induced stress associated with inhomogeneous Li concentration in the electrode may cause the electrode material to damage, and then further degrade storage capacity and cycling performance of LIB. Therefore, it is important to quantitatively understand the mechanism relating to the stress evolution in electrode during electrochemical cycling, which will be conducive to developing effective methods of relieving the diffusion induced stress. In this work, a bilayer electrode model is proposed by taking into account Li diffusion, built-in stress, concentration-dependent material properties and elastoplastic deformation of current collector. Based on the established model, the influences of the possible plastic deformation in the current collector on the lithium diffusion and stress evolution of bilayer electrode during charging are investigated. The numerical results show that the plastic deformation of current collector can weaken the constraint between current collector and active layer, which leads to a smaller electrode curvature and more homogeneous lithium concentration in the active layer. The relaxation effect of the plastic deformation not only significantly relieves the stresses at the bottom and top surface of active layer, but also promotes the diffusion of lithium into active layer, which can improve the structural reliability of the electrode and increase the effective capacity of the active layer. Furthermore, the influences of the yield strength and plastic modulus of the current collector are discussed. The results indicate that the constraint between the current collector and active layer becomes weaker with reducing yield strength and plastic modulus of current collector, respectively. In other words, the further stress relaxation in the electrode indicates that the capacity can be enhanced upon reducing the yield strength and plastic modulus of current collector, respectively. Considering our results, it is expected that a bilayer electrode composed of the current collector with smaller mechanical strength enjoys simultaneous improvement in battery usable capacity and structural reliability. Consequently, the results of this paper provide a route to improving the cycle performance of bilayer lithium-ion battery electrode.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3