Computer simulation of adsorption properties of polymer on surface under external driving force

Author:

Li Hong ,Ai Qian-Wen ,Wang Peng-Jun ,Gao He-Bei ,Cui Yi ,Luo Meng-Bo , , ,

Abstract

Monte Carlo simulation is performed to study the adsorption properties of polymers on an attractive surface. Annealing method is adopted to simulate the adsorption characteristics and conformational changes of polymer chains driven by an external driving force F. In simulations using cooperative motion algorithm, the ensembles of monomers located at lattice sites are connected by non-breakable bonds. When the external force is F=0, the finite-size scale method can be used to determine the critical adsorption temperature (Tc) of the polymer chain on the attractive surface, but when the external force is F>0, the dependence of the average number of surface contacts M> on the chain length N is unrelated to temperature T. Therefore, Tc cannot be obtained by the finite-size scale method. However, the pseudo-critical adsorption temperature Tc can be estimated by a function of the average number of surface contacts M> and the temperature T for the chain length N=200. And then Tc decreases with external force F increasing. The phase diagram is obtained for the polymer chain between the desorbed state and the adsorbed state under temperature T and external driving force F. Furthermore, the influence of the external driving force on the conformation of the polymer chain is analyzed by the mean square radius of gyration of polymer chains. The critical adsorption point Tc can be checked roughly by the minimum location of the mean square radius of gyration or by the variation of its components in the Y and Z direction perpendicular to the external force. With the increase of the external force F for adsorbed polymer, the temperature T can determine whether polymer is changed from the adsorption state to the desorption state and where the force is located at the transformation. There are two different cases, that is, the polymer can be desorbed at the temperature Tc* TTc and the polymer cannot be desorbed at T Tc*. In this paper, we discuss these two cases for the adsorption of polymer on the attractive surface:weak and strong adsorption. In the first case, the adsorption is strongly influenced by the external driving force. By contrast, in the strong adsorption, the adsorption is weakly influenced by the external force. Our results unravel the dependence of adsorption of polymer on external driving force, which is also consistent with the phase diagram of adsorption and desorption of polymer chains.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference33 articles.

1. Wackerlig J, Schirhagl R 2016 Anal. Chem. 88 250

2. Wackerlig J, Lieberzeit P A 2015 Sens. Actuator B: Chem. 207 144

3. Ma Y Q, Zhang Z X, Hu Z J, Cheng K, Jia Y X 2016 Sci. Techn. Innov. Herald. 13 186. (in Chinese) [马余强, 张泽新, 胡志军, 贾玉玺 2016 科技创新导报 13 186]

4. Kantor Y, Kardar M 2017 Phys. Rev. E 96 022148

5. Tong H P, Zhang L X 2012 Acta Phys. Sin. 61 058701. (in Chinese) [仝焕平, 章林溪 2012 物理学报 61 058701]

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3