Shape controlled growth for type Ib large diamond crystals
-
Published:2018
Issue:16
Volume:67
Page:168101
-
ISSN:1000-3290
-
Container-title:Acta Physica Sinica
-
language:
-
Short-container-title:Acta Phys. Sin.
Author:
Wang Jun-Zhuo ,Li Shang-Sheng ,Su Tai-Chao ,Hu Mei-Hua ,Hu Qiang ,Wu Yu-Min ,Wang Jian-Kang ,Han Fei ,Yu Kun-Peng ,Gao Guang-Jin ,Guo Ming-Ming ,Jia Xiao-Peng ,Ma Hong-An ,Xiao Hong-Yu , , , ,
Abstract
The shape controlled growth of diamond is beneficial to its subsequent processing. The shape controlled growth for abrasive grade diamond, whose particle size is less than 1 mm, has been studied extensively, while the shape controlled growth of large diamond crystals, which have important commercial and scientific applications, has not been investigated in detail. Therefore, it is necessary to do further researches. In this study, we synthesize large type Ib diamond crystals and investigate their growth shapes at pressures of 5.3-5.9 GPa and temperatures of 1200-1370℃, by using Fe64Ni36 alloy as the catalyst and (100) or (111) face of seed as growth face. Experimental results show that for the diamond crystals grown along the (100) face, the crystal shapes presents plate shape at 1206-1215℃, tower shape at 1216-1260℃, and tower steeple shape at 1261-1360℃; in sequence while for those grown along the (111) face, the crystal shape is of tower at 1233-1238℃ and becomes plate at 1239-1364℃. The ratio of height to diameter, which can provide a standard to quantify the shape of a diamond, is used to describe the crystal shape in detail. For large diamond crystals growing along the (100) face, under a high pressure of 5.6 GPa, the ratio of height to diameter increases with temperature increasing but the ratio of height to diameter, when growing along the (111) face, decreases. The shape distributions of large diamond crystals in the V-shaped region can be determined in the experiments of large diamond crystal synthesis at different temperatures (1200-1370℃) and pressures (5.3 GPa, 5.6 GPa, 5.9 GPa). The lower limit temperature of large diamond crystal growing along the (111) face in the V-shape region is obviously higher than that growing along the (100) face, but the difference between the higher limit temperatures for growing along these two faces is not obvious. The difference between the lower temperature limits of large diamond crystals growing along the (100) and (111) face can be explained by the different energies of the crystal surface and diamond/graphite equilibrium line in the phase diagram of carbon/alloy. Therefore, it has been realized that the shapes for type Ib large diamond crystals are controlled.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference21 articles.
1. Bundy F P, Hall H T, Strong H M, Wentorf R H 1955 Nature 176 51 2. Chen Y N, Zhang Y, Yu W C, Gong M, Yang F, Liu R, Wang J M, Li L, Jing P, Wang Z G 2017 Micronano Electron. Technol. 54 217 (in Chinese) [陈亚男, 张烨, 郁万成, 龚猛, 杨霏, 刘瑞, 王嘉铭, 李玲, 金鹏, 王占国 2017 微纳电子技术 54 217] 3. Qin J M, Zhang Y, Cao J M, Tian L F 2011 Acta Phys. Sin. 60 058102 (in Chinese) [秦杰明, 张莹, 曹建明, 田立飞 2011 物理学报 60 058102] 4. Liu Y J, He D W, Wang P, Tang M J, Xu C, Wang W D, Liu J, Liu G D, Kou Z L 2017 Acta Phys. Sin. 66 038103 (in Chinese) [刘银娟, 贺端威, 王培, 唐明君, 许超, 王文丹, 刘进, 刘国端, 寇自力 2017 物理学报 66 038103] 5. Sumiya H, Toda N, Nishibayashi Y, Satoh S 1997 J. Crystal Growth 178 485
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|