Total ionizing dose effect of ferroelectric random access memory under Co-60 gamma rays and electrons

Author:

Qin Li ,Guo Hong-Xia ,Zhang Feng-Qi ,Sheng Jiang-Kun ,Ouyang Xiao-Ping ,Zhong Xiang-Li ,Ding Li-Li ,Luo Yin-Hong ,Zhang Yang ,Ju An-An , ,

Abstract

Ferroelectric random access memory (FeRAM) has superior features such as low power consumption, short write access time, low voltage, high tolerance to radiation. Data about the total ionizing dose (TID) radiation effects of FeRAM have not been rich in the literature so far. Experimental study of the ionizing radiation effect of FeRAM is carried out based on Co-60 γ rays and 2 MeV electrons. And the TID radiation damages to the FeRAM in the dynamic biased, static biased and unbiased case are studied. The direct current and alternating current parameters are tested by J-750. The test results indicate that the stored information about the memory cell has no change before failure, the ferroelectric capacitors are still able to hold the data. Accordingly, the TID failure of the FeRAM should be mainly ascribed to the poor TID hardness of the peripheral complementary metal oxide semiconductor circuits. Besides, three types of electric fields from three working conditions can result in different generation and recombination rates of electronhole pairs. For static biased case, the internal electric field in the FeRAM is constant. It can lead to high net production of the electronhole pairs and a great number of trapped charges. Hence the radiation damage in the static biased case is most serious. With the increase of the total radiation dose, the electrical parameters of FeRAM have different degradations. Part of the parameters that can be detected by J-750, may lapse before they are detected online. Standby current, operating power supply current, leakage current and output low voltage are radiationsensitive parameters of FeRAM through analyzing the test data. And, other parameters, which have slight changes, have small effect on the degradation of the device. Furthermore, the electron accelerator is used in electron irradiation experiment. By comparing the results of the two kinds of radiation tests, it is discovered that the electrons tend to cause lighter TID degradation than Co-60 γ rays because of the high density of electrons in the electron irradiation environment and low net production rate of electronhole pairs. In addition, the electrons have weaker penetration than Co-60 γ rays due to low energy. The device packaging, the upper metal layers can also influence the experimental result of electron irradiation. The above conclusions provide a reference value for the total dose effect of FeRAM and will be of great significance for studying the radiation hardening of FeRAM.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental studies of radiation effects on FRAM chips;Modeling of systems and processes;2022-10-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3