Nonlinear ultrasonic evaluation of damage to bonding interface under cyclic temperature fatigue

Author:

Yuan Bo ,Shui Guo-Shuang ,Wang Yue-Sheng ,

Abstract

Adhesively bonded structures possess various industrial applications, such as safety-critical structures in the aerospace and automotive industries. With the increasing using of adhesive joints, corresponding methods of evaluating and testing the structural integrity and quality of bonded joints have been widely investigated and developed for the structural health monitoring. Studies show that the damage and degradation of material are closely related to the nonlinearity of ultrasonic waves propagating within the material. In this paper, for the evaluating of the damage to bonding interface under cyclic temperature fatigue, acoustic nonlinear parameters (ANPs) of specimens made of aluminum alloy 6061 and modified acrylate adhesive are measured experimentally by using the nonlinear ultrasonic technique; and thus the variations of the ANPs with the fatigue time under high and low cyclic temperature are obtained for the bonded specimens. The study shows that the ANP, which serves as an indicator of material properties, remains nearly unchanged in the initial stage of high temperature cyclic fatigue test, and the ANP obviously increases with temperature cyclic time increasing. For low temperature cyclic fatigue test, the ANP increases rapidly with the increase of temperature cyclic time in the initial stage, and its value growth slows down in the later stage. Further discussion shows that the increase of third order elastic constant is the main reason for the change of ANP for high temperature cyclic fatigue, and that the change of the tensile stiffness of the bonding interface is the main source for the change of the ANP for low temperature cyclic fatigue. It is shown that the ANP based on the theoretical model increases consistently with the experimentally measured values. The present research is expected to provide a promising way of characterizing and monitoring the damage to bonding interface under cyclic temperature fatigue.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference27 articles.

1. Sun D L, Yu X C 2014 Adhesive and Adhesive Technology Foundation (Beijing: Chemical Industry Press) p5 (in Chinese) [孙德林, 余先纯 2014 胶黏剂与粘接技术基础 (北京:化学工业出版社) 第5页]

2. Qin W, Li L, Ye Z Y, L G, He S Y 2016 J. Harbin Inst. Technol. 48 17 (in Chinese) [谢敏, 高建民, 杜谦, 吴少华, 秦裕琨 2016 哈尔滨工业大学学报 48 17]

3. Xie M, Gao J M, Du Q, Wu S H, Qin Y K 2016 J. Harbin Inst. Technol. 48 17 (in Chinese) [谢敏, 高建民, 杜谦, 吴少华, 秦裕琨 2016 哈尔滨工业大学学报 48 17]

4. Liu Z L, Song L H, Bai L, Xu K L, Ta D A 2017 Acta Phys. Sin. 66 154303 (in Chinese) [刘珍黎, 宋亮华, 白亮, 许凯亮, 他得安 2017 物理学报 66 154303]

5. Jordan P M 2006 J. Phys. Lett. A 355 216

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3