Radiation induced parasitic effect in silicon-on-insulator metal-oxide-semiconductor field-effect transistor

Author:

Peng Chao1\2 ,En Yun-Fei ,Li Bin ,Lei Zhi-Feng ,Zhang Zhan-Gang ,He Yu-Juan ,Huang Yun , ,

Abstract

In this paper, we investigate the total ionizing dose (TID) effects of silicon-on-isolator (SOI) metal-oxide-semiconductor field-effect transistors (MOSFETs) with different sizes by using 60Co γ-ray. The SOI MOSFET contains a shallow trench isolation (STI) edge parasitic transistor and back gate parasitic transistor, in which STI oxide and buried oxide (BOX) are used as gate oxide, respectively. Although these parasitic effects are minimized by semiconductor device process, the radiation-induced trapped-charge can lead these parasitic effects to strengthen, thereby affecting the electrical characteristics of the main transistor. Since both the STI and BOX are sensitive to the TID effect, we try to distinguish their different influences on SOI devices in this work.The experimental results show that the characteristic degradation of device originates from the radiation-enhanced parasitic effect. The turning-on of the STI parasitic transistor leads the off-state leakage current to exponentially increase with total dose increasing until the off-state leakage reaches a saturation level. The threshold voltage shift observed in the narrow channel device results from the charge sharing in the STI, while the back gate coupling is a dominant contributor to the threshold voltage shift in short channel device. These results are explained by two simple models. The experimental data are consistent with the model calculation results. We can conclude that the smaller size device is more sensitive to TID effect in the same process.Furthermore, the influence of the negative bias at back gate and body on the radiation effect are also studied. The negative bias at back gate will partially neutralize the effect of positive trapped-charge in STI and that in BOX, thus suppressing the turning-on of STI parasitic transistor and the back gate coupling. The parasitic transistors share a common body region with the main transistor. So exerting body negative bias can increase the threshold voltage of the parasitic transistor, thereby restraining the TID effect. The experimental and simulation results show that the adjustment of the threshold voltage of parasitic transistor by body negative bias is limited due to the thin body region. The modulation of body negative bias in depletion region is more obvious in back gate parasitic transistor than in STI parasitic transistor. The weakening of parasitic conduction in the back channel is more noticeable than at STI sidewall under a body negative bias.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3