Fiber-type difference frequency generation infrared optical frequency comb based on the femtosecond pulses generated by a mode-locked fiber laser

Author:

Ma Jin-Dong ,Wu Hao-Yu ,Lu Qiao ,Ma Ting ,Shi Lei ,Sun Qing ,Mao Qing-He , , ,

Abstract

Optical frequency comb (OFC) is a new type of high-quality laser source. The visible and near-infrared OFCs have become mature, and it has been widely used in optical frequency metrology, time/frequency transfer, precision laser spectroscopy and other fields. Since the mid and far-infrared spectral regions contain a large number of baseband absorption lines for molecules and the absorption intensities are several orders of magnitude higher than those in the visible and near-infrared spectral region, one has made great efforts to develop the mid and far-infrared OFCs in recent years. Although a variety of approaches to achieving infrared OFCs directly have been proposed, the method of difference frequency generation (DFG) infrared OFC based on the optical rectification technique is still more efficient. DFG infrared OFCs with widely tuning ability have been demonstrated based on fiber lasers so far. However, how to obtain the broadband spectrum for a DFG infrared OFC with widely tuning ability still needs to be solved. In this paper we report a fiber-type DFG infrared OFC by using the femtosecond pulses from a mode-locked erbium-doped fiber laser as the fundamental light. Based on the self-developed mode-locked fiber laser oscillator with repetition rate locked, the two-color fundamental pulse trains with the central wavelengths of 1.5 and 2.0 m are respectively achieved after the chirped pulse fiber amplification and all-fiber supercontinuum (SC) generation techniques have been utilized. With a time-domain synchronous detection system based on the intensity autocorrelation principle, the accurate synchronization with the fundamental two-color pulses is obtained by optimizing the OFS compensated fiber length and adjusting a tunable optical delay line. Finally, by using the optical rectification technique, a fiber-type DFG infrared OFC is successfully generated with the help of a suitable designed GaSe nonlinear crystal. Our experimental results also show that the spectral location of the DFG infrared OFC can be tuned by controlling the spectral shape of the SC combined with the adjustment of the phase-matching for the nonlinear crystal. The measured tuning range of the DFG infrared OFC is from 6 to 10 m, and the maximum spectral width is 1.3 m. This fiber-type DFG infrared OFC may play an important role in the molecular spectroscopy, the atmospheric environmental monitoring, and other fields.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3