Effect of edge inclination of single crystal diamond on homoepitaxial growth

Author:

Geng Chuan-Wen ,Xia Yu-Hao ,Zhao Hong-Yang ,Fu Qiu-Ming ,Ma Zhi-Bin ,

Abstract

Polycrystalline diamond is easy to appear at the edge of single crystal diamond grown by homogeneous epitaxial growth, which makes it difficult to enlarge the two-dimensional surface area of single crystal diamond. In this study, the microwave plasma chemical vapor deposition (MPCVD) is used, the edge of the single crystal diamond (100) crystal face is finely cut and polished to form an inclined surface which is different from the (100) crystal plane at different angles. After being pretreatment, homogeneous epitaxial growth is carried out in a double-substrate waveguide-type MPCVD device with CH<sub>4</sub>/H<sub>2</sub> reaction gas. At the same time, the variation of plasma near the inclined plane of (100) crystal edge is analyzed by optical emission spectroscopy to study the effect of the tilting on the growth of the diamond edge. The experimental results show that the angle of the inclined surface of the edge has an effect on the quality of single crystal epitaxial growth of the edge. As the angle of the inclined surface of the single crystal diamond increases, the quantity of edge polycrystalline diamond first decreases and then increases. At an oblique angle of 3.8°, the edge exhibits complete single crystal epitaxial growth characteristics, which conduces to expand the surface area of single crystal diamond. According to the analysis, the inclined surface at different angle changes the surrounding electric field strength and plasma density of the edge, resulting in the change of carbon-containing precursors reaching the surface of the substrate. When the concentration of carbon-containing precursors on the inclined step surface is higher than the growth threshold of layered step, excessive carbon-containing precursors will constantly collide with each other and accumulate to form polycrystalline diamond on the step. When the concentration is lower than the growth threshold of layered step, the carbon-containing precursors on the surface of the substrate will be laid out to form a layered step. Therefore, the edge effect during the growth of single crystal diamond is weakened at the tilt angle of 3.8°, which leads the concentration of carbon-containing precursors on the inclined step surface to be lower than the growth threshold of layered step.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference13 articles.

1. Matsumoto S, Sato Y, Kamo M, Setaka N 1982 Jpn. J. Appl. Phys. 21 183

2. Bray K, Kato H, Previdi R, et al. 2017 Nanoscale 10 4028

3. Prestopino G, Marinelli M, Milani E 2017 Appl. Phys. Lett. 111 143504

4. Chen J L, Zhang S, Cheng H J, Xu Y K 2016 The 29s Academic Exchange Meeting of the Society of Carbon Materials of the Chinese Society of Metals Shizuishan, China, October 20, 2015 p23

5. Nad S, Gu Y, Asmussen J 2015 Diamond Relat. Mater. 60 26

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3