Multispectral image enhancement based on illuminance-reflection imaging model and morphology operation

Author:

Wang Dian-Wei1\2 ,Han Peng-Fei ,Fan Jiu-Lun ,Liu Ying1\2 ,Xu Zhi-Jie ,Wang Jing , , , ,

Abstract

In this paper we propose a multispectral image enhancement algorithm based on illuminance-reflection imaging model and morphology operation that enables us to solve the problem of improving the multispectral degraded images. Firstly, we transform the image from RGB space to HSV color space, and the hue remains unchanged. As for the saturation component, we use the adaptive nonlinear stretching to improve the image color saturation and brightness. Secondly, according to the illuminance-reflection imaging model, we adopt the guided image filtering method to decompose the brightness into illuminance component and reflection component. Usually, the illumination component mainly determines the dynamic range of the pixels in the image, corresponding to the low frequency part of the image, reflecting the global characteristics of the image and the edge detail information of the image; the reflected component represents the intrinsic essential characteristics of the image, corresponding to the high frequency part of the image, and contains most of the local detail information of the image as well as all noise. Thirdly, we present an improved adaptive gamma function, which can dynamically adjust the illuminance component by the local distribution characteristics, and use the contrast-limited adaptive histogram equalization to correct the illuminance component. Afterwards we propose a detail-feature weighted fusion strategy. The original illumination and the two corrected illuminations are fused to obtain the final illumination component. Fourthly, we propose an improved morphological operation to denoise and enhance the details of the reflection component. Finally, the corrected illumination component and the enhanced reflection component are combined to obtain the improved brightness component. In order to verify the efficiency of the algorithm proposed in the paper, we use both subjective visual effectiveness method and quantitative parameter analysis method to measure the enhancement performance in multispectral imaging scenarios, including low illumination image, underwater image, high-dynamic range image, sandstorm image, haze image and thermal infrared image. Then standard deviation, information entropy and average gradient are used as evaluation indices respectively, and qualitative and quantitative comparison with a variety of image enhancement algorithms show that the proposed algorithm can not only well suppress noise but also obviously improve local details and global contrast. Experimental results show that the proposed method proves to be better in performance.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3