Author:
Pei Chuan-Kang ,Wei Bing-Qian ,
Abstract
As one of the most fundamental and iconic fluid motion, droplet impact exists widely in scientific technologies and natural environment, and the phenomenon has been studied both for fundamental mechanism and for industrial applications in aerospace engineering, inkjet printing, agricultural irrigation and hydraulic structure erosion. Therefore, it is of great significance to study such basic movements for understanding the interfacial deformation of gas and liquid flow and improving the applications of droplet impact movement in engineering. Droplet impacting on a deep liquid pool has been extensively investigated for droplets with millimeter diameter. In this article, focusing on the cavity formation mechanism during a Micron-sized waterdrop impact on a deep pool, we perform systematic numerical simulations with adaptive mesh refinement technique and volume of fluid method to study the impact of a 290 μm water droplet on a deep water pool at velocities in a range of 2.5-6.5 m/s. The free surface motion, geometric variation of the cavity, local pressure field and vorticity field at selected times are presented to identify the pool-drop water mixing, capillary wave propagation, cavity formation, vortex ring generation and bubble entrapment phenomenon, and the dynamic mechanism of cavity motion is further explored. It is found that under the premise of neglecting the surface tension effects on the cavity whose depth is in a range of h∈(D, hmax), where D is the radius of initial droplet and hmax is the maximum depth, the cavity growth time to reach its maximum depth still scales as t∝h5/2, where t is time, but in the end, the formation of the bottom of the cavity is driven by capillary waves. There are two types of the initial cavity shapes: one is U-shape and the other is hemispherical shape, the former one generally changes into V-shape, and in the latter case, the bottom of the cavity will gradually transform into cylindrical shape, resulting in a thin jet and possible bubble entrapment. Cavity collapse is closely related to capillary wave propagation. When the impact velocity is low (Fr=567.1, Re=1595, We=121.8), the low-pressure zone is initially generated at the junction between the cavity sidewall and the bottom, a large vortex ring is then generated near the free surface and the bottom of the cavity, respectively. Under high impact velocities (Fr=792.1, Re=1885, We=170.2), the thin jet is observed, the generation of the vortex ring is suppressed. The low-pressure zone is first generated at the junction between the wave bottom and the cavity sidewall, after the cavity becomes cylindrical, the cavity collapses before the capillary wave arrives at the bottom, causing a bubble entrapment.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献