Influence of temperature on supercontinuum generation induced by femtosecond laser filamentation in NaCl solution

Author:

Li He ,Chen An-Min ,Yu Dan ,Li Su-Yu ,Jin Ming-Xing , , , ,

Abstract

Supercontinuum generation is an important nonlinear phenomenon that occurs during the femtosecond laser filamentation in transparent medium, and its potential and promising applications like remote sensing, biomedical imaging and generation of few-cycle femtosecond pulses, etc. have aroused a great deal of interest. With the extensive and thorough theoretical simulation and experimental research of the supercontinuum generation in air, the mechanism of the supercontinuum induced by femtosecond laser filament in gaseous medium has become clear. However, the femtosecond laser filament-induced supercontinuum in liquid is still an open question. In this work, by taking NaCl solution for example, we investigate the influence of solution temperature on the supercontinuum induced by the femtosecond laser filamentation in solution. It is found that when the laser pulse energy is relatively low (e.g. 20 and 50 J), the influence of solution temperature on supercontinuum generation can be neglected. In contrast, when the laser pulse energy is relatively high (e.g. 200 J), with the increase of solution temperature, the supercontinuum generation shows a suppression tendency. The water molecules in NaCl solution are photo-ionized due to the high intensity of femtosecond laser filament, generating a great deal of oxygen (O2), hydrogen (H2) and water vapor (H2O), and thus forming bubbles that float upwards. In the case of lower pulse energy, the multi-photon ionization rate is low, therefore, only a few bubbles are generated, and they are small in size, which hardly affects the supercontinuum generation. In the case of higher pulse energy, a large number of bubbles can be observed in the NaCl solution, and their sizes become increasingly large when the temperature of NaCl solution increases. The generation of bubbles leads to the reflection and refraction of light, which inevitably influences the spectral intensity. Furthermore, the components (e.g. O2, H2 and H2O) in the bubbles also absorb the supercontinuum, which further lowers the spectral intensity. This work reveals that the main factors leading to the supercontinuum suppression in solution can be attributed to the generation of bubbles during femtosecond laser filamentation and the scattering and absorption of light caused by water vapor in bubbles. When we detect the components in solution via the femtosecond laser filament-induced supercontiunum, the influence of tempera-ture can be effectively eliminated by adjusting the incident pulse energy. Moreover, in the case of high pulse energy, the supercontinuum generation can be controlled by adjusting the solution temperature. This study is conducible to the application of supercontinuum as well as its generation.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3