Theoretical analysis of new optical microcavity

Author:

Gu Hong-Ming ,Huang Yong-Qing ,Wang Huan-Huan ,Wu Gang ,Duan Xiao-Feng ,Liu Kai ,Ren Xiao-Min ,

Abstract

Optical microcavity can confine light into a small volume by resonant recirculation. Devices based on optical microcavities are already indispensable for a wide range of applications and studies. They not only apply to traditional optics, but also have broad application prospects in quantum information and integrated optoelectronic chips. In quantum optical devices, microcavity can cause atoms or quantum dots to emit spontaneous photons in a desired direction or can provide an environment where dissipative mechanisms such as spontaneous emission are overcome so that quantum entanglement of radiation and matter is possible. For better application in quantum communication, optical microcavity needs to have a high quality factor and a low mode volume. Considering the beam coupling, spot shape and experimental production and others, the Fabry-Perot (F-P) microcavity has been widely applied to the field of optoelectronics. However, the Q-factor of the F-P microcavity is generally low, and the mode volume is large, so it needs to be improved.In addition, high Q-factor microcavity can also play a large role in detecting particles and biological macromolecules.In this paper, through the theory of wave optics, the eigenmodes of a new type of cone-top cylindrical optical micro-cavity are analyzed, and the resonant wavelength expression of the resonant cavity is obtained. We discuss the effects of the top mirror angle on the resonator performance and application of COMSOL simulation software to verify the proposed cone-top cylindrical microcavity. The optimized design and simulation results show that the quality factor of the new resonator can be increased by 22.4% to 49928.5 and the effective mode volume of the resonator can be reduced by 47.8% compared with the traditional parallel resonator. In this case, the corresponding new cavity length is 4.51 μm and the diameter is 3.13 μm. In this article its fabrications are also discussed.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference21 articles.

1. Zhang Y, Chen M X, Li Y Y, Yuan J 2015 Laser Optoelectron. Prog. 52 11 (in Chinese) [张莹, 陈梅雄, 李莹颖, 袁杰 2015 激光与光电子学进展 52 11]

2. Vahala K J 2003 Nature 424 839

3. Wang Q, Huang Y, Ren X 2001 Proceedings of SPIE–the International Society for Optical Engineering 4580 577

4. Liu K, Huang Y Q, Ren X M 2000 Appl. Opt. 39 423

5. Cao S, Xu X L 2014 Physics 43 740 (in Chinese) [曹硕, 许秀来 2014 物理 43 740]

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3