Author:
Gu Hong-Ming ,Huang Yong-Qing ,Wang Huan-Huan ,Wu Gang ,Duan Xiao-Feng ,Liu Kai ,Ren Xiao-Min ,
Abstract
Optical microcavity can confine light into a small volume by resonant recirculation. Devices based on optical microcavities are already indispensable for a wide range of applications and studies. They not only apply to traditional optics, but also have broad application prospects in quantum information and integrated optoelectronic chips. In quantum optical devices, microcavity can cause atoms or quantum dots to emit spontaneous photons in a desired direction or can provide an environment where dissipative mechanisms such as spontaneous emission are overcome so that quantum entanglement of radiation and matter is possible. For better application in quantum communication, optical microcavity needs to have a high quality factor and a low mode volume. Considering the beam coupling, spot shape and experimental production and others, the Fabry-Perot (F-P) microcavity has been widely applied to the field of optoelectronics. However, the Q-factor of the F-P microcavity is generally low, and the mode volume is large, so it needs to be improved.In addition, high Q-factor microcavity can also play a large role in detecting particles and biological macromolecules.In this paper, through the theory of wave optics, the eigenmodes of a new type of cone-top cylindrical optical micro-cavity are analyzed, and the resonant wavelength expression of the resonant cavity is obtained. We discuss the effects of the top mirror angle on the resonator performance and application of COMSOL simulation software to verify the proposed cone-top cylindrical microcavity. The optimized design and simulation results show that the quality factor of the new resonator can be increased by 22.4% to 49928.5 and the effective mode volume of the resonator can be reduced by 47.8% compared with the traditional parallel resonator. In this case, the corresponding new cavity length is 4.51 μm and the diameter is 3.13 μm. In this article its fabrications are also discussed.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference21 articles.
1. Zhang Y, Chen M X, Li Y Y, Yuan J 2015 Laser Optoelectron. Prog. 52 11 (in Chinese) [张莹, 陈梅雄, 李莹颖, 袁杰 2015 激光与光电子学进展 52 11]
2. Vahala K J 2003 Nature 424 839
3. Wang Q, Huang Y, Ren X 2001 Proceedings of SPIE–the International Society for Optical Engineering 4580 577
4. Liu K, Huang Y Q, Ren X M 2000 Appl. Opt. 39 423
5. Cao S, Xu X L 2014 Physics 43 740 (in Chinese) [曹硕, 许秀来 2014 物理 43 740]
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献