Influence of laser-generated perturbations on hypersonic boundary-layer stability

Author:

Liu Xiao-Lin ,Yi Shi-He ,Niu Hai-Bo ,Lu Xiao-Ge ,

Abstract

In this paper, the boundary layer flow stability is investigated experimentally in a 7° half-angle straight cone under the condition of Mach number 6 and unit Reynolds number 3.1×106/m. Expanded shock wave generated by focusing laser in a limit space is used as the small artificial disturbance, and the influence of the laser-generated perturbation on the stability of the hypersonic boundary layer is analyzed. In the experiment, the wall fluctuation pressure is measured by the high-frequency pressure sensors whose response frequencies each reach a value on the order of megahertz. Through the short time Fourier transformation and power spectrum density analysis of the pressure data, the results show that when the laser-generated perturbation is added to the flow field, the position of the second mode wave advances and the amplitude of the disturbance wave greatly increases. Within the same flow range, the laser focusing on disturbance pushes the disturbance wave in the boundary layer from the linear development phase into the nonlinear development state. The laser-generated perturbation has a significant effect on the promotion of the development of disturbance waves in the boundary layer. At the same time, laser-generated perturbation that has different influences on the boundary layer when it focuses on different positions. When the laser focus disturbance focuses on the location X=100 mm, the amplitude of the disturbance wave with a frequency of 90 kHz in the boundary layer grows fastest, and the amplitude magnification at the position of X=500 mm is 3.81. When the laser perturbation is added to the free flow in front of the cone, the frequency of the disturbance wave with the fastest amplitude increase speed greatly decreases to 73 kHz. In the same range, the amplitude magnification is 4.51 times. It can be seen that when the laser focuses on the free stream upstream from the cone, its effect on the disturbance wave in the boundary layer is more significant.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference27 articles.

1. Morkovin M V, Reshotko E, Herbert T 1994 Bull. Am. Phys. Soc. 39 1882

2. Mack L M 1975 AIAA J. 13 278

3. Mack L M 1984 AGARD Rep. 709

4. Malik M 1989 AIAA J. 27 1487

5. Demetriades A 1974 7th Fluid and PlasmaDynamics Conference Palo Alto, CA, USA, June 17-19, 1974 p535

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3