Fast implementation of four-dimensional entangled state in separately coupled cavities via shortcut to adiabatic passage

Author:

Zhang Chun-Ling ,Liu Wen-Wu ,

Abstract

Quantum information, as a comprehensive subject of quantum mechanics and information science, has a broad theoretical research value and application prospect. As a resource of quantum information, quantum entanglement has been studied thoroughly, which is not only significant to understand the features of quantum mechanics, but also of great value to the development of the method new quantum information processing. Therefore, the generation of entangled state is widely studied theoretically. In comparison to low-dimensional entangled states, multi-dimensional entangled states are not only safe but also efficient and error-tolerant for quantum computation. The adiabatic technique is one of the most widely used and proven techniques in quantum information science. The main advantages of this technique are that it is insensitive to the fluctuation of experimental parameters, and the interaction time of the system is not required to be controled accurately. However, limited by the adiabatic condition, it usually takes relatively long interaction time in scheme via adiabatic technique to achieve the target states. If the required evolution time is too long, the scheme may be useless. To overcome this problem, researchers have done a lot in the field of finding ways to shorten the long interaction time of adiabatic passage. Among these works, the technique named shortcuts to adiabatic passage is a successful work in this field and it has attracted a great deal of attention in recent years. In this paper, based on transitionless quantum driving to construct shortcuts to adiabatic passage, an efficient scheme to fast generate a four-dimensional entangled state of two-atom is proposed. The atoms are respectively trapped in the separate two-mode cavities which are connected by optical fiber. To achieve an alternative physically feasible system, the non-resonant dynamics is adopted to create a Hamiltonian which can exactly drive the system to evolve along the instantaneous eigenstates of the original Hamiltonian. As a result, if the system goes through adiabatic passage, it will evolve in the dark state, not transit to other states. Hence, using transitionless quantum driving to shortcuts to adiabatic passage, the evolutionary time in this scheme is much less than that in other schemes based on traditional adiabatic passage. The rigorous numerical simulations are conducted. The results show that with suitable pulsed laser parameters, this scheme is robust against decoherence arising from fiber decay, cavity decay and atomic spontaneous emission. Moreover, the scheme is more feasible in physics. That is, based on the proposed scheme, a high-fidelity four-dimensional entangled state of two-atom can be achieved.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3