Author:
Zhao Jun-Ying ,Jin Ning-De , ,
Abstract
We propose a multivariate graph centrobaric trajectory-based method for characterizing nonlinear dynamics from high-dimensional chaotic time series. After the optimal selecting of the embedding dimension and time delay, we map the high-dimensional vector point into the two-dimensional radial plane graph, i.e., the high-dimensional vector point is transformed correspondingly to a geometric polygon. By extracting the geometric location of the polygon barycenters, we can obtain the evolving feature of the barycenter dynamical trajectory. Then we use the moment quantity of the barycenter trajectory to distinguish different chaotic time series. Finally, we apply our method to the fluctuating signals measured from gas-liquid two-phase flow experiments. The results suggest that our method can be a powerful tool for not only distinguishing the different flow patterns but also investigating the dynamical evolving mechanism of flow patterns.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献