Study of the proton irradiation damage on Capsule type polarization-maintaining optical fibers made in China

Author:

Zhang Hong-Chen ,Liu Hai ,Qiao Wen-Qiang ,Li Xing-Ji ,He Shi-Yu ,V. V. Abraimof ,

Abstract

A spacecraft running in the space environment would be irradiated by the proton, and the irradiation effects on the most important parts of the optical fiber gyroscope in the spacecraft -the optical fiber ring is the most. In order to investigate the irradiation damage induced by proton irradiation on the Capsule type polarization-maintaining optical fibers made in china, the variation of the transportation power at 1310 nm wavelength is measured by means of situ measurement for the 5 MeV and 10 MeV environments protons irradiation on the Capsule type polarization-maintaining optical fibers made in china. The irradiation induced loss is calculated by us. The Stopping and Range of Ions in Matter (SRIM) software was used to simulate the ionic and displacement damage of 5 MeV and 10 MeV energy protons irradiation on the optical fibers. The O 1s and Si 2p analytic spectrum of the before and after irradiation were obtained by means of X ray photoelectron spectroscopy (XPS). Using the Fourier transform infrared spectrometer (FTIR), we analyzed the before and after irradiation spectrum. The results show that at the 1310 nm wavelength, the rradiation induced loss of the of optical fibers increase with the increasing of the protons fluence due to the increase of the SiOH concentration in optical fiber core. The 5 MeV proton irradiation induced loss is worse than that of the 10 MeV mainly because the more worse displacement and the ironic damage induced by 5 MeV proton at the position of the optical fiber core than that of 10 MeV, i.e., the more amount of SiOH generation.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3