Author:
Li Yu-Ye ,Jia Bing ,Gu Hua-Guang ,
Abstract
To study the effect of noise on the network and the influence of noise on the spatio-temporal behaviors of the network, a homogeneous network of excitable cells is constructed, in which the classical Morris-Lecar neuron model behaves as a unit by electric coupling to neighbouring ones. The deterministic behavior of each unit is a resting state corresponding to class Ⅱ excitability. Under the action of white Gaussian noise in the network, spiral wave can be induced within a large range of noise intensity, while disordered spatiotemporal structure is induced within a certain small intensity range. With the increase of noise intensity, spiral wave is characterized by a transition back and forth between simple structure and complex structure, or appears alternately with the disordered structure. By calculating spatial structure function and signal-to-noise ratio (SNR), it is found that the SNR of spiral wave with a simple structure is higher and the SNR becomes lower when the spiral wave has a complex or an even disordered structure. The SNR curve shows that multiple peaks appear with the increase of noise intensity, which indicates that white Gaussian noise can induce the multiple spatial coherence resonance in an excitable cellular network, and suggests that there are many opportunities to select diverse intensity noises to be rationally used in a realistic excitable system.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献