Analytical method of softness abrasive two-phase flow field based on 2D model of LSM

Author:

Ji Shi-Ming ,Weng Xiao-Xing ,Tan Da-Peng ,

Abstract

To solve the precision machining problem in the structural surface mould manufacturing process, a new no-tool precision machining method based on softness abrasive flow machining (SAFM) is proposed. The key technology of SAFM is the characteristic analysis of two-phase flow. To solve this problem, a two-dimensional model of the two-phase flow is established by the topological structure transformation of level set method. This mechanics model is used to simulate the motion of the turbulent flow and work out the characteristic parameters of abrasive two-phase flow. The simulation results show that this model can preferably simulate the motion of the two-phase flow and calculate velocity and pressure with k- model and Preston equation. Therefore the feasibility of SAFM can be confirmed and a good reference can be provided for the further research.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical modeling and experimental investigation of a two-phase sink vortex and its fluid-solid vibration characteristics;Journal of Zhejiang University-SCIENCE A;2024-01

2. Key technologies and development trends of the soft abrasive flow finishing method;Journal of Zhejiang University-SCIENCE A;2023-12

3. 面向低压电器的协同装配方法;Frontiers of Information Technology & Electronic Engineering;2023-06

4. A review of microfluidic impedance sensors for pathogen detection;International Journal of Pharmaceutical Sciences and Developmental Research;2022-09-09

5. A polishing method using self-excited oscillation abrasive flow for the inner surface of workpiece;The International Journal of Advanced Manufacturing Technology;2022-01-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3