Author:
Zhu Liang-Qing ,Lin Tie ,Guo Shao-Ling ,Chu Jun-Hao ,
Abstract
It is important to study the mechanism of negative magnetoresistance (MR) in magnetic semiconductors for the correct understanding of the sp-d interactions between carriers and magnetic ions. In this work, temperature-dependent Hall effect (10300 K) and magnetic susceptibility (5300 K) are measured for the study of negative MR and paramagnetic enhancement of nondegenerate p-type Hg1-xMnxTe (x0.17) monocrystal. As temperature decreases, both negative MR and susceptibility show the same behaviors, each of which contains an exponentially changing temperature function \exp(-K/T). According to the theory of impurity energy level in semimagnetic semiconductor, magnetic field can lead to the spin-splitting of acceptor level and result in reducing the binding energy of acceptors, which is responsible mainly for the negative MR in nondegenerate p-type Hg1-xMnxTe monocrystal.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献