Author:
Wu Shao-Quan ,Chen Jia-Feng ,Zhao Guo-Ping ,
Abstract
We theoretically investigate the effect of the interdot coulomb interaction on Kondo resonance in series-coupled double quantum dots. The Anderson Hamiltonian of our system is solved by means of the slave-boson mean-field approximation, and the variations of the density of states, the transmission probability, the occupation number and the Kondo temperature with interdot Coulomb interaction are discussed in the Kondo regime, and the densities of states are calculated in the Kondo regime for various interdot Coulomb repulsions with parallel and antiparallel lead-polarization alignments. Our results reveal that the interdot Coulomb interaction between quantum dots greatly influences the physical property of this system, and relevant underlying physics of this problem is discussed.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy