The fabrication and field emission properties of ZnO nanoparticles-doped diamond-like carbon films by electrochemical deposition

Author:

Zhang Pei-Zeng ,Li Rui-Shan ,Xie Er-Qing ,Yang Hua ,Wang Xuan ,Wang Tao ,Feng You-Cai , , , ,

Abstract

The formation of ZnO nanoparticles embedded in diamond-like carbon (DLC) thin film, deposited by electrochemical technique without post-processing, is observed. The effect of ZnO doping on the field emission (FE) property of DLC film is investigated. The chemical composition, the microstructure, and the surface morphologies of the sample are characterized by X-ray photoelectron microscopy, transmission electron microscopy, Raman spectrum, and atomic force microscope (AFM). It is shown that the ZnO nanoparticles are of a wurtzite structure and the content of ZnO increases with Zn source increasing in electrolyte. The ZnO doping enhances both the graphitization and the surface roughness of the DLC film, which is verified by Raman spectrum and AFM. By the ZnO doping, the FE properties of the DLC film are improved. An emission current density of 1 mA/cm2 is obtained at an electric field of 20.7 V/m for the film with a Zn/(Zn+C) ratio of 10.3at%. The improvement on the FE properties of the ZnO-doped DLC film is analyzed in the context of microstructure and chemical composition.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3