Author:
Yuan Ling ,Sun Kai-Hua ,Cui Yi-Ping ,Shen Zhong-Hua ,Ni Xiao-Wu , ,
Abstract
In the process of producing materials, the surface roughness always exists. And it can change the velocity of surface acoustic wave (SAW) which propagates in the material. To assess the properties of materials by laser induced SAW, an inverse method based on the wide-band velocity dispersion characteristic of laser-induced SAW is most commonly used. To study whether the surface roughness can be one of the inversion characteristic parameters, an experimental apparatus is constructed in this article. In the apparatus, the SAW is induced in the surface roughness sample by laser, and it is received by a polyvinylidene fluoride transducer with wide frequency band. Using this apparatus, we study the influences of different surface roughnesses on SAW velocity. In the paper a physical model of laser-induced SAW propagating in roughness surface is established theoretically. The time domain characteristic of SAW is obtained by the finite element method, and then the velocity dispersion curve of SAW is achieved. It is concluded that the theoretical result and the experimental result are in good agreement with each other. The studies in this article form theoretical and experimental bases for assessing surface roughness by means of laser-induced SAW technique.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference13 articles.
1. Han Q B, Qian M L, Zhu C P 2007 Acta Phys. Sin. 56 313 (in Chinese) [韩庆邦, 钱梦禄, 朱昌平 2007 物理学报 56 313]
2. Yuan L, Shen Z H, Ni X W 2007 Acta Phys. Sin. 56 7058 (in Chinese) [袁玲, 沈中华, 倪晓武 2007 物理学报 56 7058]
3. Pantano A, Cerniglia D 2008 Appl. Phys. A 91 521
4. Wang J S, Xu X D, Liu X J, Xu G C 2008 Acta Phys. Sin. 57 7765 (in Chinese) [王敬时, 徐晓东, 刘晓峻, 许钢灿 2008 物理学报 57 7765]
5. Hurley D H, Reese S J, Park S K, Utegulov Z, Kennedy J R, Telschow K L 2010 J. Appl. Phys. 107 063510-1
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献