Detection of brain auditory evoked magnetic field based on low-Tc superconducting quantum interface device

Author:

Zhang Shu-Lin ,Liu Yang-Bo ,Zeng Jia ,Wang Yong-Liang ,Kong Xiang-Yan ,Xie Xiao-Ming , ,

Abstract

Superconducting quantum interface devices (SQUID) is widely used in human brain signal detection. As one of the applications of magnetoencephalography (MEG) system, the detection of the auditory evoked response is useful for the development of MEG system and the research into auditory mechanism of human brain. Generally, the auditory evoked response includes three peaks which are P50m, N100m and P200m. We develop a single-channel MEG system in a magnetically shielded room based on the superconducting quantum interface device (SQUID) and second-order axial gradiometer. The responses of the main peak N100m under different tone frequencies are preliminarily studied by using our system. The typical evoked response of N100m to 1 kHz pure tone and 100 ms duration is measured to be 0.4 pT. Under the tone stimulus at low frequency, the delay of the peak N100m to the tone onset is 125 ms at 100 Hz, which is longer than the typical value of 100 ms. In comparison with the response to 1 kHz pure tone stimulus, the amplitude of the evoked response in a random frequency range from 1 kHz to 4 kHz is stronger and the delay is several milliseconds. This work lays the foundation of the studies of the auditory mechanism and multichannel MEG system by using software gradiometers.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3