An electrostatic dynamic model for wind-blown sand systems

Author:

Lu Lu-Yi ,Gu Zhao-Lin ,Luo Xi-Lian ,Lei Kang-Bin ,

Abstract

An electrostatic dynamic model for wind-blown sand systems of dust devils or sand-dust storms was developed based on the electrochemistry of water molecular film on the surface of particles, in which water is ionized as H3O+/HO- and their concentration vary with temperature. The mobility of H3O+ from high concentration regime to low concentration regime is greater than that of HO-. The interaction of particles result in the change of particle kinetic energy and the particle surface temperature. The simulation of a three-sized particle system with diameters of 0.1, 0.2, and 0.4mm and particle numbers of 750, 100 and 50, respectively, shows that the small particles are charged negatively while the large particles are charged positively, which reasonably explains the electrostatic mechanism of dust devils and sand-dust storms. It was also found that the electrification is relevant to the humidity of granule system, which explains Guardiola's experiments. Coupled with gas-particle two-phase flow model, this electrostatic dynamic model will improve the accuracy of numerical simulation of the wind-blown sand system.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3