Investigation on the dispersion characteristics of a uniform plasma grating

Author:

Yu Lu-Le ,Sheng Zheng-Ming ,Zhang Jie ,

Abstract

Recently, the plasma Bragg gratings induced by two intersecting laser pulses has been predicted theoretically. The dispersion relation of uniform plasma gratings under the oblique incidence of a light wave is investigated with the transfer-matrix method and the coupled-mode theory. Both approaches show that such plasma gratings exhibit a photonic band gap, near which strong dispersion appears. The photonic band gap has different polarization characteristics when the light wave is obliquely incident on the plasma grating. With the increase of the incident angle, the band gap for an S-polarized wave increases gradually, while that for a P-polarized wave decreases first rapidly, then vanishes when it approaches the Brewster angle, and finally becomes wide with the further increase of the incident angle. Since the plasma grating has an ultrabroad photonic band gap and can support an ultrahigh damage threshold of incident light waves, it has the potential to be a novel photonic device to manipulate extremely intense laser pulses.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3