Study on the critical free electron density for nanosecond laser pulse focusing in air

Author:

Han Jing-Hua ,Feng Guo-Ying ,Yang Li-Ming ,Zhang Qiu-Hui ,Jia Jun ,Li Gang ,Zhu Qi-Hua ,Zhou Shou-Huan ,

Abstract

Experimental study on the energy transmissivity of high -power nanosecond laser pulse focusing in air versus input laser energy has been carried out. There are three stages: when the input laser energy is relatively low,all of the laser energy can pass through the focusing point; when the input laser energy increases gradually,energy transmissivity decreases steeply from nearly 100% to lower values; when the input laser energy keeps on increasing,the transmissivity decreases slowly further. By defining the critical electron density and the corresponding critical time point,successful theoretical analysis has been carried out for the above experimental phenomena. When the free-electron density is less than the critical value,multiphoton ionization plays the dominating role; when the free-electron density is higher than the critical value, the inverse bremsstrahlung process dominates. The critical time point is the time when laser pulse reaches critical electron density in the process of laser pulse passing through the air; its position on the laser pulse is determined by the input laser pulse energy,meanwhile this position determines the energy transmissivity of the laser pulse. So we can calculate the critical electron density by measuring the transmissivity versus input energy and comprehend the characteristics of transmissivity for laser pulse focusing in the air.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3