Author:
Huang Hua ,Gan Yan-Qing ,Lei Lu-Rong ,Jin Xiao ,Ju Bing-Quan ,Xiang Fei ,Feng Di-Chao ,Liu Zhong ,
Abstract
The physics of modulation and rf extraction of an S-band relativistic klystron oscillator is studied in this paper via experiment, theory, and simulation. It is found that the intense relativistic electron beams (IREBs) can be intensely current-modulated when the IREBs drift through three pillboxes with high coupling. After bunching in the downstream the modulated IREBs can excite high-power microwave in the triaxial cavity. These properties, which have short oscillating time, compact geometry and high beam-wave conversion efficiency, were encouraging. Using a 1 MV, 13 kA, 40 ns electron beam and a 0.9 kGs leading magnetic field, 3.5 GW radiated power was extracted in 20 ns FWHM pulses at 2.86 GHz. The efficiency was 27%, and the instantaneous bandwidth was 2%. The radiated power was 3.4 GW when the repetition rate IREBs was 20 Hz. The experimental results agree well with the simulations.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献