Research on the emission process of doped PhOLED by transient EL and delay luminescence measurement

Author:

Long Man-Man ,Zhao Su-Ling ,Xu Zheng ,Shen Chong-Yu ,Zhang Cheng-Wen ,Yang Zhao-Kun ,Huang Di ,

Abstract

The organic phosphorescent OLED (PhOLED) has been widely studied because its inner quantum efficiency can reach 100%, but there has been much debate about the internal luminescence mechanism and process, mainly because they are explained using the luminescence theory of inorganic LED. In this paper, we set up a transient electroluminescence (EL) and delay EL measurement system, and for the first time asfar as we know use this measurement system to study the internal luminescence mechanism and process of PhOLED. In these studies we first fabricate a PhOLED which uses a kind of new efficient red-emitting iridium(III) complexes (Bis[2-(9, 9-dimethyl-9H-flouren-2-yl) benzothiazolato-N, C2'] iridium(III) (acetylacetonate)) doped with TAZ as the emitting layer. From the results, we find that there exists an overshoot at the end edge of the driving pulse; through the research we find that this is reasonable for the holes and electrons to accumulate in the object materials Irf and host TAZ, respectively. We also find that at the interface between host transfer layer and emission layer there exist a large number of holes. Through the delay luminescence measurement, we have proved that the emission of this doped system mainly comes from the directly trapped holes and electrons in Irf, and then excitons are formed.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3