Study on the photodetachment of H- ion near a dielectric sphere

Author:

Chen Qiang ,Wang De-Hua ,

Abstract

Photodetachment of hydrogen negative ion near a dielectric sphere has been studied by using the image method combined with the semiclassical closed orbit theory. Firstly, we analyze the image charge distribution of the detached electron near the dielectric sphere; then we put forward the Hamiltonian for this system. By solving the Hamiltonian canonical equations, we can find the closed orbits of the detached electrons moving near the dielectric sphere. With the help of the semiclassical closed orbit theory, we derive the formula for calculating the photodetachment cross section of this system. Then we can calculate and analyze the photodetachment cross section. Calculated results suggest that the photodetachment cross section of the hydrogen negative ion near a dielectric sphere is not only related to the photon energy, but also the dielectric constant of the sphere. For a given dielectric sphere, with the increase of photon energy, the oscillating amplitude in the photodetachment cross section decreases while the oscillation frequency increases. When the photon energy is increased to a critical value, the oscillating structures in the cross section disappear. In addition, with the increase in the dielectric constant of the dielectric sphere, the oscillating structure in the photodetachment cross section becomes much more complicated. When the dielectric constant is increased to infinity, the photodetachment cross section of this system is consistent with the photodetachment cross section of the hydrogen negative ion near a metal sphere. Therefore, we can control the photodetachment cross section of the hydrogen negative ion near a dielectric sphere by changing the photon energy and the dielectric constant. Our study may provide some theoretical guidance and reference values for the experimental research of photodetachment of negative ion near the dielectric sphere.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3