Effect of the oscillation of substrate potential in driven Frenkel-Kontorova chains

Author:

Lei You-Ming ,Li Yi-Wei ,Zhao Yun-Ping ,

Abstract

In this paper, the effect of the oscillation of the substrate potential in a one-dimensional Frenkel-Kontorova model is considered. The relationship between the oscillating amplitude, frequency of the substrate and the nanofriction phenomena such as hysteresis, maximum static friction force, super-lubricity are investigated. Similar results are obtained for the two cases in which the ratios of the atomic distance to the period of potential field of the substrate potential field are incommensurate and commensurate respectively. The results show that on one hand, with the appropriate frequency, the area of the hysteresis will decrease while the amplitude increases, and the tendency of the decrease depends on the frequency. In particular, suitable frequency and amplitude give rise to super-lubricity. However, when the frequency is too high, the result is the same as those in the case without oscillation. On the other hand, fixing the amplitude, the area of the hysteresis will increase with the increase of frequency in spite of tendencies being different. At the same time, on a whole, the maximum static friction force has an increasing tendency. Interestingly and importantly, for a certain amplitude, as the frequency increases, the maximum static friction force first decreases to zero (corresponding to super-lubricity), and then increases. That is, there is an optimum oscillating frequency which makes the system have the minimum static friction force. Furthermore, the difference between the above two circumstances lies in that for commensurate interfaces, there are the same start-up velocities for a certain frequency and various small amplitudes, which is different from the incommensurate mating contacts. Hence, it shows that the latter has a more complex dynamic behavior under the same hypothesis.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3