Thickness dependence of microstructure for La0.9Sr0.1MnO3/Si films determined by micro-Raman spectroscopy
-
Published:2009
Issue:11
Volume:58
Page:8008
-
ISSN:1000-3290
-
Container-title:Acta Physica Sinica
-
language:
-
Short-container-title:Acta Phys. Sin.
Author:
Liu Xue-Qin ,Han Guo-Jian ,Huang Chun-Kui ,Lan Wei ,
Abstract
La0.9Sr0.1MnO3 films on Si (100) substrate of different thickness were prepared by sol-gel routine, and the microstructure of LSMO/Si was studied by XRD and confocal micro Raman spectroscopy. Both XRD and Raman results show different structures in LSMO films of different thickness. There are two strong peaks around 490 cm-1and 600 cm-1 that is characteristic of Jahn-Teller distortion in spectra and characteristic peak of rhombohedral structure of the film with thickness of 90 nm, which show the coexistence of two phases. Lattice constants of LSMO film vary with film thickness. Lattice constants vary as film thickness increases, which is because the tilting angle of MnO6 octahedron and the bond length of Mn-O increase as film thickness increases. Raman spectra of 532 nm-laser and 325 nm-laser show, that there are two phases existing in LSMO/Si film, namely the phase in LSMO/Si interface, and the rhombohedral phase in the surface.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy