Influence of structure and doping concentration of AlxGa1-xN/GaN double quantum wells on wavelength and absorption coefficient of intersubband transitions

Author:

Lei Shuang-Ying ,Shen Bo ,Zhang Guo-Yi ,

Abstract

By solving the Schrdinger and Poisson equations self-consistently, the central barrier height, central barrier width, well width, and doping concentration in the barriers of symmetric Al0.75Ga0.25N/GaN double quantum wells (DQWs) have been studied to investigate their influences on the wavelength and absorption coefficient of intersubband transitions (ISBTs). A smaller wavelength of the ISBT between the first odd and the second even order subbands (S1odd-S2even ISBT) in Al0.75Ga0.25N/GaN DQWs and a larger absorption coefficient of the S1odd-S2even ISBT were obtained with decreased central barrier height, when the central barrier height was larger than 0.62 eV. The wavelength of the S1odd-S2even ISBT decreases, and the absorption coefficient of the S1odd-S2even ISBT increases, when the width of the central barrier is reduced. On the other hand, decreasing the width of the well will result in smaller wavelength of the S1odd-S2even ISBT and larger absorption coefficient of the S1odd-S2even ISBT when the width of the well is narrower than 1.9 nm. When doping concentration in the barriers is smaller than 1018/cm3, the wavelength of the S1odd-S2even ISBT is unchanged, while the absorption coefficient of the S1odd-S2even ISBT increases with the doping concentration. These results provide useful guidance for realization of ultrafast two-color optoelectronic devices operating in the optical communication wavelength range.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3