Author:
Lei Shuang-Ying ,Shen Bo ,Zhang Guo-Yi ,
Abstract
By solving the Schrdinger and Poisson equations self-consistently, the central barrier height, central barrier width, well width, and doping concentration in the barriers of symmetric Al0.75Ga0.25N/GaN double quantum wells (DQWs) have been studied to investigate their influences on the wavelength and absorption coefficient of intersubband transitions (ISBTs). A smaller wavelength of the ISBT between the first odd and the second even order subbands (S1odd-S2even ISBT) in Al0.75Ga0.25N/GaN DQWs and a larger absorption coefficient of the S1odd-S2even ISBT were obtained with decreased central barrier height, when the central barrier height was larger than 0.62 eV. The wavelength of the S1odd-S2even ISBT decreases, and the absorption coefficient of the S1odd-S2even ISBT increases, when the width of the central barrier is reduced. On the other hand, decreasing the width of the well will result in smaller wavelength of the S1odd-S2even ISBT and larger absorption coefficient of the S1odd-S2even ISBT when the width of the well is narrower than 1.9 nm. When doping concentration in the barriers is smaller than 1018/cm3, the wavelength of the S1odd-S2even ISBT is unchanged, while the absorption coefficient of the S1odd-S2even ISBT increases with the doping concentration. These results provide useful guidance for realization of ultrafast two-color optoelectronic devices operating in the optical communication wavelength range.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献