Formations of conic surfaces on diamond films induced by hot filament assisted double-bias hydrogen plasma

Author:

Meng Liang ,Zhang Jie ,Zhu Xiao-Dong ,Wen Xiao-Hui ,Ding Fang ,

Abstract

The hot filament assisted double-bias hydrogen has been employed for the surface fabrication of the as-formed chemical vapor deposited diamond films on the nanometer scale. Diamond cone arrays are successfully prepared through hydrogen plasma etching. The intrinsic columnar structure of the diamond films leads to the unevenly distributed ion etching rate, which plays an important role in the cone formation. Simultaneously, the carbon-containing species sputtered out may re-deposit on the surface. The evolvement of the characteristic surface is thus determined by the competition between the ion etching and the carbon deposition. The application of grid electrode influences the discharge characteristics at the substrate region. By controlling the grid current, the surface structure of diamond films may be significantly tuned. Moreover, by introducing small amounts of methane in the etching process, the increased concentration of carbon-containing species enhances the secondary diamond nucleation on the film surface, which further promotes the uniformity of the diamond cone arrays.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3