Author:
Zhang Jun-Feng ,Hu Shou-Song ,
Abstract
Multi-kernel learning support vector regression (MKL-SVR) are proposed for chaotic time series prediction to solve the problems of kernel selection and hyper-parameter determination when using the standard SVR. The algorithm is realized through quadratic constrained quadratic programming (QCQP) in the hybrid kernel space, which not only reduces the number of support vectors, but also improves the prediction performance. Finally, it is applied to Mackey-Glass, Lorenz and Henon chaotic time series prediction. The results indicate that the proposed method can effectively increase the prediction precision, accelerate the convergency of cascade learning and enhance the generalization of prediction model.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献