Chaotic time series prediction based on multi-kernel learning support vector regression

Author:

Zhang Jun-Feng ,Hu Shou-Song ,

Abstract

Multi-kernel learning support vector regression (MKL-SVR) are proposed for chaotic time series prediction to solve the problems of kernel selection and hyper-parameter determination when using the standard SVR. The algorithm is realized through quadratic constrained quadratic programming (QCQP) in the hybrid kernel space, which not only reduces the number of support vectors, but also improves the prediction performance. Finally, it is applied to Mackey-Glass, Lorenz and Henon chaotic time series prediction. The results indicate that the proposed method can effectively increase the prediction precision, accelerate the convergency of cascade learning and enhance the generalization of prediction model.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3