The microstructural and electrochemical properties of oxygen ion implanted nanocrystalline diamond films

Author:

Wang Rui ,Hu Xiao-Jun ,

Abstract

The nanocrystalline diamond (NCD) films are implanted by oxygen ions with a dose of 1×1012 cm-2 and subsequently annealed at 700, 800, 900 and 1000 ℃, respectively. The microstructure and electrochemical properties of these NCD films are investigated systematically and the results show that the potential windows of the unannealed sample (O120) and 1000 ℃ annealed sample (O121000) increase up to 4.6 V and 3.61 V, respectively. The mass transfer efficiencies of the two samples are also better, indicating that the oxygen ion implantation and 1000 ℃ annealing can improve the mass transfer efficiency of NCD film. The results of infrared spectrum measurements show that there are no hydrogen atoms that are terminated to the surfaces of samples O120 and O121000, while hydrogen atoms terminate to the surfaces of the other samples. It is indicated that oxygen ion implantation and 1000 ℃ annealing can damage hydrogen terminations in the surface, which improves the electrochemical performances of NCD films. Raman spectrum measurements suggest that high content of diamond phase, small internal stress and more disordered amorphous carbon can improve the electrochemical properties of NCD films. When the number or size of sp2 carbon clusters in amorphous carbon grain boundaries decreases, the electrochemical properties of NCD films become better.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3