Simulation of aerolian sand transport with SPH-FVM coupled method

Author:

Chen Fu-Zhen ,Qiang Hong-Fu ,Gao Wei-Ran ,

Abstract

To overcome the drawback of discrete particle model (DPM) and Euler-Euler two-fluid model (TFM) in solving gas-solid two phase flow, a new method called SPH-FVM coupled method is presented, and then it is used to simulate aerolian sand transport problems. Based on a pseudo fluid model the smoothed particle hydrodynamics (SPH) is used to solve the discrete particle phase by tracing the movement of each individual particle, and the finite volume method (FVM) is used to discretize the continuum flow field on the stationary mesh by capturing fluid characteristics. Two phases are coupled through contributions due to the effects of drag, pressure gradient and volume fraction, and then the coupled framework of SPH-FVM is established. The properties of SPH are redesigned to be suited for the discrete phase named SDPH. The relationship between SPH particles and discrete particles is illustrated, and the SPH discrete equations of pseudo fluid are derived. Saltation processes of sands in aerolian sand transport, sand movement under free-air wind, and creeping processes of dune, are simulated; while the particle trajectories, the distribution characteristics of mean downwind velocity, and the changes of gas velocity under the sand reaction are analyzed. Through comparison with experiments, it is shown that the accuracy of the new method is high, and it can also reduce the computational cost. This indicates that the new method can be applied to aerolian sand transport even to other gas-solid multiphase flows.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3