Author:
Deng Fang-Ming ,He Yi-Gang ,Zuo Lei ,Li Bing ,Wu Ke-Han , ,
Abstract
This paper presents a low-cost low-power humidity sensor for applications of ultra-high frequency radio frequency identification sensing tag. The humidity sensor element, based on standard SMIC 0.35 μm complementary metal-oxide-semiconductor technology, utilizes polyimide as sensing material and fabricates the interdigitated electrodes in top metal layer without any further post-processing. The humidity sensor interface, based on phase-locked loop theory, employs fully-digital architecture and achieves direct capacitance-to-digital conversion, which allows the supply voltage to be close to threshold voltage. The measurements at 25 ℃ show that the proposed humidity sensor achieves a sensitivity of 36.5 fF%RH, maximum hysteresis error of 7%, response time of 20 ms, and 2.1 μW power dissipation at 0.6 V supply voltage.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献